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Abstract

Evaporation of a droplet is a process of heat and mass transports. When the droplet evaporates, heat is removed

from the surface and the surface temperature is reduced thereby, resulting in a temperature gradient normal to the free

surface. Such a situation is similar to that with a liquid layer heated from below. Thus, Marangoni instability as de-

scribed by Pearson [J. Fluid Mech. 4 (1958) 489] may probably exist in an evaporating droplet, which is a very

important and interesting phenomenon both from the academic and application points of view. In the present work, the

energy method, which is appropriate for unsteady flows, is applied to investigate the stability of an evaporating droplet

against disturbances of any amplitude.

The results predicted by the present study possess similar trends with those acquired by the linear stability analysis.

Both studies indicate that, as time proceeds, both the increase of the surface temperature reduction and the growth of the

thermal boundary layer near the free surface are conducive to the onset of instability. The critical Marangoni number

and wave number increase with the droplet initial temperature. For all the cases studied, the critical Marangoni numbers

predicted by the energy method are smaller than those calculated by the linear stability analysis. However, the subcritical

region between the Mac’s as calculated by these two methods is very narrow. This consistency indicates the validity of

linear stability analysis as a first approach to the analysis of Marangoni instability of an evaporating droplet.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Conventional hydrodynamic stability theory is

mainly concerned with the determination of the critical

values of parameters, such as the critical Reynolds

number, Rayleigh number or Taylor number, demar-

cating a region of stability from that of instability. The

theory based on small disturbances superimposed on a

basic flow is called the linearized stability theory. Be-

cause of its simplicity and straightforwardness, the lin-

earized stability theory is generally applied to analyze

the instability of a given flow. However, suffering from
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its basic assumption, the validity of the linearized sta-

bility theory becomes questionable when applied to an

unsteady flow or disturbances of finite strength. Hence,

the non-linear approach becomes inevitable to investi-

gate the effects of finite disturbances.

The oldest method of non-linear stability analysis

which can deal with finite disturbances is the energy

method, originated by Reynolds [2] and Orr [3]. They

found the critical Reynolds numbers for simple perturbed

flows with an equation related to the global kinetic en-

ergy. However, these early results provided quite con-

servative estimates for the critical Reynolds number. The

energy method was thus discarded for years. Later, Ser-

rin [4] and Joseph [5,6] reformulated the energy method,

and two important results were deduced from the inves-

tigation of the stability of viscous fluid motions. The first

was the existence of a universal stability criterion for
ed.
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Nomenclature

Bi heat exchange parameter

Cr Crispation number

D mass diffusivity

D integrals with the definition as Eq. (3.5b)

E a positive-definite energy function with the

definition E ¼ K þ kMaH
Ev dimensionless evaporation rate

H set of suitably differential functions ~V 0 and U
with the definition as Eq. (3.6b)

hlg latent heat of evaporation

Ik integrals with the definition as Eq. (3.5c)

i imaginary unit

K the total kinetic energy of the perturbed field

in the evaporating droplet

k thermal conductivity

Le Lewis number

L2 operator

l wave number of the disturbances

Ma Marangoni numberfMac maximum value of the specified definite

integrals with its definition as Eq. (3.6a)

Mak eigenvalues of the Euler–Lagrange equa-

tions (2.38), (2.41), (2.42), (3.9)–(3.16)

m azimuthal wave number

m0 dimensional evaporation rate

Pm
l associated Legendre polynomials

Pr Prandtl number

p pressure

Q dimensionless heat flux due to the evapora-

tion

R; h;/ dimensionless spherical coordinates
_R regression rate of the evaporating free sur-

face

r; h;/ dimensional spherical coordinates

r0 radius of the evaporating droplet

rw ratio of molecular weights Mamb=Ml

S the evaporating free surface of the droplet

T temperature

T set of suitably differential functions ~V 0 and U
with the similar definition of H except the

continuity condition being removed

t dimensional time

U magnitude of the perturbed R-component

velocity

u velocity component
~V velocity vector

V space occupied by the droplet

Yv mass fraction of the liquid vapor

Y m
l spherical harmonics

Greek symbols

a thermal diffusivity

d notation of the variation operator

H quantity scaling the magnitude of changes in

the total thermal energy of the perturbed

field in the evaporating droplet

l viscosity

m kinematic viscosity

q density

r surface tension

s dimensionless time

U redefined dimensionless temperature with

the definition U ¼
ffiffiffiffiffiffiffiffiffi
kMa

p
T 0

/k thermal conductivity ratio

/a thermal diffusivity ratio

/l viscosity ratio

/q density ratio

v defined parameter indicating the heat

transfer due to temperature perturbation

Miscellaneous symbols

R universal gas constant

I magnitude of temperature perturbation

Superscripts
0 perturbed quantity

� dimensionless quantity

Subscripts

c critical condition

g gas property

l liquid property

v vapor property (of the evaporating liquid)

s surface condition

0 initial condition
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flows with arbitrary disturbances in a bounded region of

space. The other was the possibility of an improved sta-

bility criterion obtained by variational method. With this

reformulation, the energy method became successful in

providing sufficient conditions for stability of a large

number of steady and unsteady flows.

In contrast to the time-independent flow, the analysis

of the instability of a time varying flow is much more
complicated. Not only the critical value of the relevant

parameter, but also the onset time and the growth rate

of the disturbances are very important. Early ap-

proaches to the problem consisted of the quasi-steady

analysis (freezing the basic state at a given instant and

determining the marginal instability) and the initial-

value method (specifying an initial distribution of dis-

turbances in the flow field and computing their evolution
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with time by integrating the perturbed equations).

However, the validity of the quasi-steady assumption on

time-varying flows is questionable. The initial-value

method depends strongly on the initial data specified

and the results calculated disagree, in general, with the

experimental observations. Moreover, these approaches

are valid only for infinitesimal disturbances. To resolve

these deficiencies, the energy method seems to be very

promising.

Homsy [7] employed the energy method (corrected

later by Neitzel [8]) to analyze the stability of a liquid

layer heated or cooled impulsively. The region of finite-

amplitude convection was demarcated in a Rayleigh

number–time plane. Later, Davis and von Kerczek [9]

presented a reformulation of the energy method and the

improved algorithm could yield an exponential decay of

disturbances without the usage of the isoperimetric

inequality (Joseph [5,6]). Hence, the stability of a

boundary-layer type flow, of which the domain was not

finite in at least one direction (e.g. jets, wakes), could

then be examined. There were two stability criteria de-

fined previously. One was referred to as the strong glo-

bal stability if the energy of the disturbances decayed

exponentially in the mean. The other was referred to as

the marginal stability if the energy of the disturbances

was less than or equal to its initial value during the time

of interest. Homsy [10] and Gumerman et al. [11] fol-

lowed the new approach of energy method to seek the

strong stability and marginal stability criteria for Benard

problems subject to modulations in either the surface

temperature or gravity, and a flow driven by surface

tension, respectively. David and Homsy [12] then gen-

eralized the energy method to analyze the stability of a

buoyancy–thermocapillary layer with a deformable free

surface. The Euler–Lagrange equations obtained were

strongly non-linear. Only certain limiting cases with

small capillary number were studied. The authors sug-

gested that the method could be further generalized to

deal with problems involving three-dimensional distur-

bances, non-Newtonion fluids and consideration of

surface viscosity and elasticity. Furthermore, Neitzel

and Davis [13] and Neitzel [14] determined the sufficient

conditions for stability and predicted the onset time of

instability of a decelerating swirl flow. Neitzel [15] ana-

lyzed the instability of a circular Couette flow with a

variable inner cylinder speed. Consistency between the

results obtained, respectively, by the energy method and

the linear stability analysis were found.

As a powerful tool for the analysis of unsteady flows,

the energy method is employed in the present study to

seek the stability boundary of an evaporating droplet.

The mechanism for the onset of instability induced by

the surface tension in an evaporating liquid is similar to

that of the classical Marangoni instability. A condition

of constant heat flux from the free surface is usually used

to model the evaporation. Many studies have been made
to analyze the instability of a planar liquid layer sud-

denly cooled from above or heated from below

[1,7,8,16–30]. Much less work has been done on

the onset of Marangoni instability in a spherical

geometry.

With a constant heat and mass flux, the instability of

a deformable spherical droplet suspended in another

immiscible liquid was investigated by Sorensen et al.

[31] using linear stability analysis. They claimed that

the results might serve as a starting point for the

understanding of the interfacial turbulence and the

deformation of cell membrane. Higuera and Linan [32]

considered the linear stability problem of a droplet

vaporizing in hot atmosphere. The Marangoni effect was

stabilizing and the viscous stresses effect was destabiliz-

ing. Pirotte and Lebon [33] analyzed the Marangoni

instability of a spherical liquid layer with an unde-

formable free surface. The critical Marangoni number

obtained was higher than that of the planar case [1].

They claimed that it was mainly due to the existence of

surface curvature. Investigations were also focused on

the problem of instability in a spherical liquid layer with

a non-deformable or deformable free surface [34–38].

Chai et al. [39] demonstrated that, with an approximate

dimensional analysis and some experimental results,

Marangoni instability induced convection could occur in

an evaporating liquid droplet. A review of recent work

concerning the Marangoni instability in a spherical

geometry can be found in the research by Lebon et al.

[40]. Wilson [41] extended the earlier work of Pirotte and

Lebon [33] to include the effect of a deformable free

surface. Errors in the Cloot and Lebon’s work [35] in

formulating the boundary conditions were corrected.

Their results indicated that, if the free surface of the

layer was non-deformable, the layer was always stable

when heated from the outside. It was unstable when

heated from the inside if the (positive) Marangoni

number was sufficiently large. However, if the free sur-

face of the layer was deformable, the neutral curves were

characterized by the bifurcation at Cr ¼ r2=4, where Cr
is the Crispation number and r2 is the dimensionless

radius of the undisturbed outer surface of the spherical

shell of liquid. If Cr > r2=4, the layer was possibly

unstable when heated from either inside or outside. Ha

[19] and Ha and Lai [20] modelled a configuration sim-

ilar to that of Wilson. The effect of phase change during

the evaporation process was considered by simulta-

neously solving the energy and species equations. With

the quasi-steady assumption, the sufficient conditions

for the onset of Marangoni instability of an evaporating

droplet were determined. The results indicated that, for

a non-deformable droplet, both the critical Marangoni

number and the critical wave number increased with the

initial temperature and decreased with time. No oscil-

latory instability was found within the parametric ranges

of interest. For a droplet with a deformable free surface,
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the stationary instability is still the preferred mode of

instability. Generally, surface deformation is a destabi-

lizing factor.

In the above studies, the linear stability analysis was

applied to investigate the onset of Marangoni instability

in a spherical geometry. As a result, they are only valid

for steady (quasi-steady) flows with small disturbances.

The present study is therefore aimed at resolving

these deficiencies by the energy method and investigating

the stability of an evaporating droplet subject to dis-

turbances of any amplitude. The onset and physical

mechanism of Marangoni instability of an evaporating

droplet are thence justified and demonstrated clearly.

The basic flow is solved first. The global energy equation

of the disturbances is derived and the stability criteria

are then derived. Comparison of the results obtained,

respectively, by the energy method and the linear sta-

bility analysis will be discussed finally.
2. Mathematical formulation

2.1. The governing equations and boundary conditions

The system to be considered is a motionless droplet

of radius r0 surrounded by a passive gas with an initial

mass fraction Y1 of the evaporating component and at

temperature T0 and pressure p1. The droplet is originally

at pressure p0 and the same temperature T0 as the sur-

rounding gas. A schematic diagram of the physical

model is shown in Fig. 1.

As shown by Ha and Lai [20] through scaling anal-

ysis, when the interest is mainly on the liquid motion of

the droplet, the surrounding gas motion can be treated

as asymptotic steady and the free surface regression can
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Fig. 1. The schematic diagram of the physical model and

coordinate system for an evaporating liquid droplet.
be neglected. Further assumptions are incompressible

flow with constant physical properties except the surface

tension which is a monotonically decreasing function of

temperature, non-deformable free surface, and negligi-

ble gravity effects. By introducing the scaling factors for

length (r0), time (r20=al), velocity (al=r0), temperature

(m0
0hlgr0=kl) with m0

0 denoting the initial evaporation rate

at the droplet surface and hlg, the latent heat of evapo-

ration at T0, pressure (qla
2
l =r

2
0), and mass fraction (Y0),

the dimensionless governing equations become, as de-

rived by Ha and Lai [20],

r � ~V �
g ¼ 0; ð2:1Þ

r � ~V �
l ¼ 0; ð2:2Þ

/a

Prg
ð~V �

g � r~V �
g þ /qrp�gÞ ¼ r2~V �

g; ð2:3Þ

1

Prl

o~V �
l

os

 
þ ~V �

l � r~V �
l þrp�l

!
¼ r2~V �

l ; ð2:4Þ

/að~V �
g � rT �

g Þ ¼ r2T �
g ; ð2:5Þ

oT �
l

os
þ ~V �

l � rT �
l ¼ r2T �

l ; ð2:6Þ

/aLeð~V �
g � rY �

v Þ ¼ r2Y �
v : ð2:7Þ

In the above equations, s is time, ~V is the velocity vector,

T is the temperature, p denotes the pressure, and Yv
represents the mass fraction of the liquid vapor and is

described by the Clausius–Clapeyron relation. /a ¼ al
ag
is

the thermal diffusivity ratio and /q ¼ ql
qg

is the density

ratio. Pr ¼ m
a is Prandtl number and Le ¼ a

D is Lewis

number. Subscripts g and l refer to the gas phase and

liquid phase, respectively, and superscript * indicates

that the physical quantity is dimensionless.

The initial conditions at s ¼ 0 are

~V �
l ¼ 0; T �

l ¼ 0: ð2:8; 2:9Þ

As R ! 1, the solutions must satisfy

~V �
g ¼ 0; T �

g ¼ 0; ð2:10; 2:11Þ

p�g ¼ p�1; Y �
v ¼ Y �

1 ¼ 0: ð2:12; 2:13Þ

At the center of the droplet, R ¼ 0, the boundary con-

ditions are

~V �
l ¼ 0; T �

l ¼ finite: ð2:14; 2:15Þ

At the droplet surface, R ¼ 1, the continuity of velocity,

mass flux, temperature and heat flux, the non-condensible

condition of the passive gas and the balance of forces

must be satisfied. They are expressed as follows.

u�h;l ¼ u�h;g; u�/;l ¼ u�/;g; ð2:16; 2:17Þ
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u�R;l � _R ¼ 1

/q

ðu�R;g � _RÞ ¼ Ev; ð2:18Þ

T �
g ¼ T �

l ¼ T �
s ; ð2:19Þ

� oT �
l

oR
¼ � 1

/k

oT �
g

oR
þ m0

m0
0

; ð2:20Þ

1

/aLe
oY �

v

oR
¼ � 1

Y0

�
� Y �

v

�
u�R;g; ð2:21Þ

�/l R
o

oR

u�h;l
R

� ��
þ 1

R

ou�R;l
oh

�
þ R

o

oR

u�h;g
R

� ��
þ 1

R

ou�R;g
oh

�
¼

/lMa

R
oT �

oh
; ð2:22Þ

�/l

1

R sin h

ou�R;l
o/

�
þ R

o

oR

u�/;l
R

� ��
þ 1

R sin h

ou�R;g
o/

�
þ R

o

oR

u�/;g
R

� ��
¼

/lMa

R sin h
oT �

o/
; ð2:23Þ

�
� p�l þ 2Prl

ou�R;l
oR

�
�
�
� p�g þ

2Prg
/a/q

ou�R;g
oR

�
¼ �2

Prl
Cr

; ð2:24Þ

where /k ¼ kl
kg
is the heat conductivity ratio and /l ¼ ll

lg
is

the viscosity ratio. Ev ¼ m0r0
qlal

is the dimensionless evapo-

ration rate per unit area per unit time at the free surface.

The expression for Ev will be obtained later by using the

velocity field of the gas phase. Cr ¼ llal
r0r0

is the Crispation

number with r0 being the surface tension at T0.

Ma ¼ � ðor=oT Þm0
0
hlgr20

llalkl
is the Marangoni number. _R is the

regression rate of the droplet which will be neglected in

the later analysis while is still retained here for the sake of

mass balance.

2.2. The basic flow

Since the attention is focused on the evaporation of a

quiescent droplet, no motion occurs in the liquid phase.

The pressure in the droplet is then constant and can be

determined from the normal-force balance condition at

the surface, Eq. (2.24), as follows

p�l ¼
2Prl
Cr

� 4Prg
/2

a/qLe
lnð1� Yvð1ÞÞ

� 1

2/q/
2
aLe

2
ln2ð1� Yvð1ÞÞ þ p�1: ð2:25Þ

However, the evaporation will result in an outward flow

motion away from the droplet surface in the gas phase.

The radial velocity, pressure, temperature, and liquid

vapor distribution in the surrounding gas phase can be
derived analytically in the following forms from the

corresponding equations and boundary conditions [20].

u�R;g ¼ � lnð1� Yvð1ÞÞ
/aLe

1

R2
; ð2:26Þ

p�g ¼ � ln2ð1� Yvð1ÞÞ
/2

a/qLe2
1

2R4
þ p�1; ð2:27Þ

T �
g ¼ T �

s

ð1� Yvð1ÞÞ
1

Le�R � 1

ð1� Yvð1ÞÞ
1
Le � 1

; ð2:28Þ

Y �
v ¼ 1

Y0
1
h

� ð1� Yvð1ÞÞ
1
R

i
; ð2:29Þ

where

Yvð1Þ ¼
exp

hfg
R

1

Tb
� 1

Ts

� �� �
rw � ðrw � 1Þ exp hfg

R

1

Tb
� 1

Ts

� �� �
is the mass fraction of the liquid vapor at the droplet

surface. The dimensionless evaporation rate is then

determined by the continuity condition of mass flux, Eq.

(2.18), i.e.,

Ev ¼ � 1

Le/að/q � 1Þ lnð1� Yvð1ÞÞ: ð2:30Þ

The temperature field of the droplet, T �
l ðR; sÞ, cannot be

solved easily in an analytic form and has to be numeri-

cally calculated from the following energy equation and

conditions [20]:

oT �
l

os
¼ 1

R2

o

oR
R2 oT

�
l

oR

� �
; ð2:31Þ

s ¼ 0; T �
l ¼ 0; ð2:32Þ

R ¼ 0; T �
l ¼ finite; ð2:33Þ

R ¼ 1; � oT �
l

oR
¼ T �

s Biþ Q: ð2:34Þ

In Eq. (2.34), the first term of the right hand side rep-

resents the heat transfer to the ambient by convection

and the second term denotes the heat flux due to evap-

oration at the free surface, with the parameters defined

as

Bi ¼ 1

/kLe
lnð1� Yvð1ÞÞ

ð1� Yvð1ÞÞ
1
Le

ð1� Yvð1ÞÞ
1
Le � 1

; ð2:35Þ

Q ¼ m0

m0
0

¼ lnð1� Yvð1ÞÞ
lnð1� Y0ð1ÞÞ

: ð2:36Þ

The transient temperature distributions of the drop-

let are solved numerically by using the Crank–Nicolson

method, which is of second-order accuracy ½ðDsÞ2;
ðDRÞ2�. To approximate the true transient solution, the

quantities Ds and DR have been chosen in such a way
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that the discrete solution must converge to within a

certain accuracy, say 10�4. Moreover, a non-uniform

grid distribution in the radial direction is used and the

grid points are clustered in the vicinity of free surface;

hence, both the accuracy and efficiency of computation

are enhanced. The algebraic expression relating the grid

distribution in the computational domain to that in the

physical domain is referred to the book written by

Hoffmann [42]. The computations are then performed

by using a non-uniform grid of 1000 points and a time

step of Ds ¼ 10�7, and are accurate to the fourteenth

decimal with the double-precision arithmetic on PC.

Within the thermal boundary layer, at least 130 grid

points are used to calculate the temperature variation

with time. With the equation of Yvð1Þ, all physical

variables of the gas phase, which are expressed in terms

of T �
s , can then be determined.

All the physical variables of the gas phase which are

expressed in terms of the surface temperature T �
s can

then be determined.
2.3. The disturbance equations

The stability of the basic flow is investigated by

superposing disturbances on the velocity, temperature

and pressure fields. Let

~V ¼ 0þ ~V 0ðR; h;/; sÞ;
T ¼ T �ðR; sÞ þ T 0ðR; h;/; sÞ;
p ¼ p�ðR; sÞ þ p0ðR; h;/; sÞ;

ð2:37Þ

the perturbed flow fields must then satisfy the following

equations

r � ~V 0 ¼ 0; ð2:38Þ

1

Pr
o~V 0

os

 
þ ~V 0 � r~V 0

!
¼ � 1

Pr
rp0 þ r2~V 0; ð2:39Þ

oT 0

os
þ ~V 0 � rT 0 ¼ r2T 0 � ~V 0 � rT �; ð2:40Þ

where the superscript ‘‘0’’ is used to denote the distur-

bances while l, used for the liquid phase previously, is

omitted for simplification.

The boundary conditions at the center of the droplet

are

~V 0 ¼ 0; T 0 ¼ finite: ð2:41; 2:42Þ

On the free surface, the boundary conditions are

u0R ¼ oEv
oT � T

0; ð2:43Þ

R
o

oR
u0h
R

� �
þ 1

R
ou0R
oh

¼ �Ma
R

oT 0

oh
; ð2:44Þ
1

R sin h
ou0R
o/

þ R
o

oR

u0/
R

 !
¼ � Ma

R sin h
oT 0

o/
; ð2:45Þ

�p0 þ 2Pr
ou0R
oR

¼ 2

R
PrMaT 0; ð2:46Þ

� oT 0

oR
¼ Bi
�

þ oBi
oT � T

� þ oQ
oT �

�
T 0 ¼ vT 0: ð2:47Þ

Eqs. (2.43)–(2.47) are, respectively, the perturbed

boundary conditions satisfying the continuity of mass

flux, shear stresses in h- and /-directions, normal stress,

and heat flux. Eqs. (2.38)–(2.47) are to be analyzed by

the energy method to determine the criteria of Ma-

rangoni instability of an evaporating droplet.
3. Energy stability analysis

3.1. The energy identities

At instant s ¼ 0, there is no flow in the droplet and

the temperature reduction near the free surface starts to

develop due to evaporation. As time proceeds, the

temperature reduction continues to develop and, in the

mean time, disturbances might be introduced. The evo-

lution of the disturbances is the main concern of stability

analysis, and in the present study the energy method is

used for this purpose.

Before the formal formulation of the energy method,

the kinetic energy of the perturbed flow motion, K, and
a quantity H are introduced first:

K ¼
Z
V

j~V 0j2

2

 !
and H ¼

Z
V

T 02

2

 !
: ð3:1; 3:2Þ

The quantity H scales the magnitude of thermal energy

of the perturbed temperature field and V refers to the

space occupied by the droplet. If both K and H tend to

vanish as s ! 1, the basic flow is stable; otherwise,

instability might occur eventually.

By taking the dot product of Eq. (2.39) with ~V 0 and

the scalar product of Eq. (2.40) with T 0, and then inte-

grating, respectively, over the entire region V with the

aid of the continuity equation (2.38), the equations

determining the rates of change of K and H are derived:

1

Pr
dK
ds

¼ 1

Pr
d

ds
j~V 0j2

2

* +

¼ � 1

Pr
hr � ð~V 0p0Þi þ hr � ð~V 0 � r � ~V 0Þi

� hðr � ~V 0Þ � ðr � ~V 0Þi; ð3:3Þ

dH
ds

¼ r � rT 02

2

� �
� hrT 0 � rT 0i � h~V 0T 0 � rT �i: ð3:4Þ
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In the above equations, h i denotes volume integration

over the region V. By taking a linear combination of

Eqs. (3.3) and (3.4) to form a positive-definite energy

functional E ¼ K þ kMaH with k;Ma > 0, and employ-

ing the divergence theorem and relevant boundary

conditions, the following energy evolution equation is

derived:

dE
ds

¼ �DþMa1=2Ik; ð3:5aÞ

where

D ¼
D
ðr � ~V 0Þ � ðr � ~V 0Þ

E
þ rU � rUh i

þ
Z
S

vU2 dS þ 2

Z
S

u0R
ou0R
oR

dS

� 2

Z
S

u0
2

h

R

 
� u0h

R
ou0R
oh

þ
u0

2

/

R
�

u0/
R sin h

ou0R
o/

!
dS;

ð3:5bÞ

Ik ¼ �k1=2h~V 0U � rT �i � k�1=2

Z
S

u0h
R

oU
oh

�
þ

u0/
R sin h

oU
o/

�
dS

þ 2k�1=2

Z
S

u0R
U
R
dS ð3:5cÞ

with U ¼
ffiffiffiffiffiffiffiffiffi
kMa

p
T 0 as the dependent variable. Symbol S

denotes the evaporating surface of the droplet. Knowing

the basic state of the temperature field, the stability

criteria can then be determined from Eqs. (3.5a)–(3.5c).

3.2. The strong global stability

The flow is said to be strongly stable [6,10] if

Ma < fMac, where

fMa�1=2
c ¼ max

H

Ik

D
with D ¼ 1; ð3:6aÞ

and

H ¼ ð~V 0;UÞjr � ~V 0
�

¼ 0; ~V 0 ¼ 0;

U ¼ finite at R ¼ 0;

Ma1=2k1=2u0R ¼ oEv
oT � U at R ¼ 1

�
: ð3:6bÞ

H represents the set of suitably differentiable functions
~V 0 and U. It can be shown that, for Ma < ~Mac, the

integrated energy function E satisfies the inequality

E�1ðdE
dsÞ6 0, implying an energy decay. This inequality is

valid for any given k > 0. Hence, it leaves k as a free

parameter which can then be chosen to best extend the

limit for stability, i.e., to obtain the greatest value of

Marangoni number Mac below which the energy de-

creases exponentially. Analytically, the best value of k is

found such that
Mac ¼ max
k>0

fMac ð3:7Þ

and Ma < Mac is a sufficient condition for stability

regardless of the magnitude of disturbances.

Since k is chosen to yield the largest eigenvalue, it

may actually vary with time. Strictly speaking, Eq. (3.5a)

is derived under the assumption that k is a constant.

However, Homsy [7] has showed that, for dk=dt6 0, i.e.

k being a monotonically decreasing function of time, the

derivation still hold. He also claimed that, for the cases

when Mac varied monotonically with time, the optimal

stability boundary remained the same even if dk=dt > 0.

Neitzel [8] reported that there existed cases where Mac
did not decrease with time monotonically (i.e. the sta-

bility curve reached a minimum first and then began to

increase toward a steady-state limit) and care had to be

taken for this situation. He suggested that it was much

better to choose k on the decreasing portion of the curve.

For an evaporating droplet, it will be shown later that

the stability curve decreases with time only.

Then, Lagrange multipliers Mak and PðR; h;/Þ are

introduced and the system (3.6) can be reformulated as a

system of partial differential equations by requiring

d Ik

(
þ 2

P

PrMa1=2k

hr � ~V 0i � 1

Ma1=2k

D

)
¼ 0: ð3:8Þ

The Euler–Lagrange equations corresponding to the

variational problem, Eq. (3.8), are

r � ~V 0 ¼ 0; ð2:38Þ

� 1

Pr
rP þr2~V 0 ¼ 1

2
Ma1=2k k1=2UrT �; ð3:9Þ

r2U ¼ 1

2
Ma1=2k k1=2~V 0rT �: ð3:10Þ

The boundary conditions at the center of the droplet are

~V 0 ¼ 0; U ¼ finite: ð2:41; 2:42Þ

On the free surface, one has

Ma1=2k k1=2u0R ¼ oEv
oT � U; ð3:11Þ

R
o

oR
u0h
R

� �
þ 1

R
ou0R
oh

¼ �Ma1=2k k�1=2

2R
oU
oh

; ð3:12Þ

1

R sin h
ou0R
o/

þ R
o

oR

u0/
R

 !
¼ �Ma1=2k k�1=2

2R sin h
oU
o/

; ð3:13Þ

�P þ 2Pr
ou0R
oR

¼ PrMa1=2k k�1=2 U
R
; ð3:14Þ

� oU
oR

¼ vU þ 1

2
Ma1=2k k�1=2 ou

0
R

o/
: ð3:15Þ
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Moreover, at h ¼ p and 0, it must satisfy

oðsin hu0/Þ
oh

"
� ou0h

o/

#
h¼p

�
oðsin hu0/Þ

oh

"
� ou0h

o/

#
h¼0

¼ 0:

ð3:16Þ

The maximum of eigenvalues 1=Mak coincides with the

solution of system (3.6). Hence, it follows that

fMac ¼ min
T

Mak ð3:17Þ

for any positive set of the eigenvalues Mak in T which is

identical with H except for the removal of the conti-

nuity condition on ~V 0. Then the eigenvalue problem and

the optimum stability boundary are related by

Mac ¼ max
k>0

fMac ¼ max
k>0

ðmin
T

MakÞ: ð3:18Þ

Eqs. (2.38), (3.9) and (3.10) are linear with time depen-

dence through T � and without limitation on the mag-

nitude of the disturbances. This fact eliminates the

necessity of making an arbitrary decision regarding the

onset of instability based on disturbance amplification

or its growth rate.

3.3. Solution procedure

By requiring the disturbance energy to decrease

exponentially, the non-linear governing equations of the

perturbed field, Eqs. (2.38)–(2.40), are reformulated to a

maximum problem (3.6). The best estimation of the

limits of stability, i.e., the optimum stability boundary,

is then obtained by finding the minimum eigenvalue of

the Euler–Lagrange equations associated with the

maximum problem. Their relation is shown in Eq.

(3.18). In the following, the eigenvalue problem, Eqs.

(2.38), (2.41), (2.42) and (3.9)–(3.16), is solved numeri-

cally. The results are then discussed and compared with

those obtained by the linear stability analysis [19,20].

By virtue of the continuity equation, the two tan-

gential stress boundary conditions, Eqs. (3.12) and

(3.13), can be combined into a single one:

o2

oR2
ðRu0RÞ �

ð2þ L2ÞðRu0RÞ
R2

¼ Ma1=2k k�1=2

2R
L2U; ð3:19Þ

where

L2 ¼ 1

sin h
o

oh
sin h

o

oh

� �
þ 1

sin2 h

o2

o/2
;

¼ R2r2 � o

oR
R2 o

oR

� �
ð3:20Þ

with r2 denoting the Laplace operator in the spherical

coordinates, i.e.,
r2 ¼ 1

R2

o

oR
R2 o

oR

� �
þ 1

R2 sin h
o

oh
sin h

o

oh

� �
þ 1

R2 sin2 h

o2

o/2
: ð3:21Þ

By eliminating the P-term in Eq. (3.9), the perturbed

R-momentum equation in terms of u0R can be derived

as follows:

r4ðRu0RÞ �
1

2R
Ma1=2k k1=2L2 U

oT �

oR

� �
¼ 0: ð3:22Þ

Motivated by the operator L2, the disturbed quantities

are expressed in terms of the spherical harmonics, i.e.,

Ru0R ¼ UðRÞY m
l ðh;/Þ; ð3:23Þ

U ¼ IðRÞY m
l ðh;/Þ: ð3:24Þ

The spherical harmonics Y m
l satisfies the following

equation

1

sin h
o

oh
sin h

o

oh

� ��
þ 1

sin2 h

o2

o/2

�
Y m
l ðh;/Þ

¼ �lðlþ 1ÞY m
l ðh;/Þ; ð3:25Þ

wherein

Y m
l ðh;/Þ ¼ Pm

l ðcos hÞeim/; ð3:26Þ

with Pm
l ðcos hÞ being the associated Legendre poly-

nomials.

Substitution of Eq. (3.23), (3.24) into Eqs. (3.10)

and (3.22), and the boundary conditions (2.41), (2.42),

(3.11), (3.15), (3.16), and (3.19) gives

d2

dR2
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þ 2
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I; ð3:27Þ
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R2

�
I

¼ 1

2
Ma1=2k k1=2 U

R
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; ð3:28Þ

at R ¼ 0,

U ¼ 0; I ¼ finite; ð3:29; 3:30Þ

at R ¼ 1,

Ma1=2k k1=2 U
R
¼ oEv

oT � I; ð3:31Þ

d2U
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� 2� lðlþ 1Þ
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U ¼ � 1

2
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lðlþ 1Þ
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I; ð3:32Þ

� dI

dR
¼ vI þ 1
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� U
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�
: ð3:33Þ
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The determination of Mac at a fixed time is now

accomplished by maximizing the least positive eigen-

value Mak of Eqs. (3.27) and (3.28) with boundary

conditions (3.29)–(3.33) over the free parameter k, and
then minimizing them over the domain of wave number

l, i.e.

Mac ¼ min
l

max
k

min
T

Mak

� �� �
: ð3:34Þ

Eigenvalues are computed using a FORTRAN program

with the IMSL subroutine DGVLRG and accurate to

the fourteenth decimal with the double-precision arith-

metic on PC. Using a non-uniform grid of 1000 points,

the eigenvalue problem is solved for each specified time

instant and initial temperature with various values of k,
and for l between 1 and 10.
3.4. Results and discussion

The stability conditions are calculated, as an exam-

ple, for an octane droplet at various time instants and

initial temperatures. However, the present method can

also be applied to other droplets, e.g., heptane, at their

early stage of evaporation and with an initial tempera-

ture not close to the boiling point. The values of the

physical properties of octane are referred to the book

edited by Dauber and Danner [43].

Fig. 2 are the stability curves calculated for an octane

droplet at various time instants and two initial temper-

atures, T0 ¼ 293 and 353 K. An experimental trajectory

would be represented by a horizontal line on this plot.

The droplet remains stable until the instant at which the
M
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Fig. 2. Stability curves as a function of time for an octane droplet w

peratures: (a) T0 ¼ 293 K, (b) T0 ¼ 353 K; (E) energy method, (L) lin
stability boundary is crossed. Hence, the stability curves

shown in Fig. 2 represent the lower bound of the onset

time of instability of an octane droplet. It can be seen

from this figure that, with a smaller value of the initial

Marangoni number, which indicates a smaller driving

potential for instability, the droplet remains stable for a

longer period of time. Moreover, this stable time period

increases rapidly for the initial Marangoni number less

than about 400. That means when the initial Marangoni

number is less than 400, the Marangoni effect is not large

enough to trigger the instability easily. Fig. 2 also indi-

cates that as time proceeds, because of the surface

temperature reduction together with the consequent

variation in surface tension due to disturbances, the

droplet tends to be more unstable.

Fig. 3 gives the onset Marangoni number as a func-

tion of wave numbers at different time instants. Calcu-

lations for four initial temperatures are included for

comparison. A lot of information can be learned from

this figure. (1) Each curve in Fig. 3 represents the vari-

ation of the onset Marangoni number versus wave

number. The minimum point on each curve denotes the

critical point. The corresponding onset Marangoni

number and wave number are called critical Marangoni

number, Mac, and critical wave number, lc. (2) The

critical wave number increases with the increase of the

initial temperature. That means disturbances of shorter

wave lengths, i.e., larger wave numbers, can become

unstable only at a higher initial temperature. (3) As time

proceeds, the critical Marangoni number decreases

indicating that the evaporating droplet becomes more

unstable, as shown in Fig. 2. In the mean time, the

critical wave number shifts back to a lower value in
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ith a non-deformable free surface at two different initial tem-

ear stability analysis.



1 2 3 4 5 6 7 8 9 10
0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04
τ=0.0005 (L)
τ

τ
τ
τ
τ
=0.001 (L)
=0.0015 (L)
=0.0005 (E)
=0.001 (E)

τ
τ

τ
τ
τ
τ

=0.0015 (E)

(a) 

l

Ma

1 2 3 4 5 6 7 8 9 10
0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04
=0.0005 (L)
=0.001 (L)
=0.0015 (L)
=0.0005 (E)
=0.001 (E)

   

τ
τ

τ
τ
τ
τ

   

=0.0015 (E)

(b) 

l

Ma

1 2 3 4 5 6 7 8 9 10
0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04
=0.0005 (L)
=0.001 (L)
=0.0015 (L)
=0.0005 (E)
=0.001 (E)

τ
τ

τ
τ
τ
τ

   =0.0015 (E)

(d)

l

Ma

1 2 3 4 5 6 7 8 9 10
0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04
=0.0005 (L)
=0.001 (L)
=0.0015 (L)
=0.0005 (E)
=0.001 (E)
=0.0015 (E)

(c) 

l

Ma

Fig. 3. Stability curves as a function of wave number for an octane droplet with a non-deformable free surface at various instants:

(a) T0 ¼ 293 K, (b) T0 ¼ 313 K, (c) T0 ¼ 333 K, (d) T0 ¼ 353 K; (E) energy method, (L) linear stability analysis.
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accord with the growth of the thermal boundary layer

thickness near the free surface. To illustrate this phe-

nomenon more clearly, the numerically calculated values

of Mac and lc for an octane droplet at different initial

temperatures and specified time instants are tabulated in

Table 1.

Shown in Fig. 4 is the stability curves as a function of

the droplet initial temperature, T0. It is obvious that the
onset Marangoni number increases with T0. That means,

with a higher initial temperature, the droplet seems to

possess intrinsically a certain potential to damp the

disturbances and, as a result, is more stable. The

mechanism is not obvious simply from the numerically

calculated results. However, the analytic expression of

Mac in terms of the temperature distribution as derived

from the linear stability analysis [19,20] could provide a

clear and direct understanding of the initial-temperature

effect on the onset of Marangoni instability of an

evaporating droplet. According to the explanation by

Ha and Lai [20], there exist two competing mechanisms

determining the onset of instability. One of them is the
temperature reduction near the free surface which is the

driving potential for the Marangoni instability. There-

fore, with a higher initial temperature which results in a

larger temperature reduction near the free surface, the

droplet on one hand should become more unstable.

The other mechanism is the existence of heat transfer to

the surrounding gas due to evaporation, which tends to

smooth the surface temperature disturbances and in-

creases with initial temperature. Thus, the droplet, on

the other hand, becomes more stable with a higher initial

temperature. The competition between these two

mechanisms determines the effect of the initial temper-

ature on the droplet instability and finally leads to the

result that Mac increases with T0.
In order to further support the validity of the above

explanation, the results obtained from the linear stability

analysis with a quasi-steady approximation [19,20] are

also shown in Figs. 2–4 and Table 1. It is obvious by

comparison that the energy method and the linear sta-

bility analysis predict similar trends for the onset of

Marangoni instability of an evaporating droplet. The



Table 1

Numerically calculated values ofMac and lc for an octane droplet at different time instants with initial temperature T0 ¼ 293 and 353 K

Linear stability analysis Energy method

T0 s Mac lc Mac lc

293 0.0004 5.06· 103 1 4.99· 103 1

293 0.0005 4.08· 103 1 4.02· 103 1

293 0.0006 3.43· 103 1 3.38· 103 1

293 0.0008 2.61· 103 1 2.57· 103 1

293 0.001 2.12· 103 1 2.08· 103 1

293 0.0015 1.46· 103 1 1.42· 103 1

293 0.002 1.12· 103 1 1.09· 103 1

353 0.0005 5.92· 103 3 5.69· 103 3

353 0.001 3.18· 103 2 3.06· 103 2

353 0.0015 2.24· 103 2 2.13· 103 2

353 0.002 1.75· 103 2 1.66· 103 2

353 0.004 1.00· 103 1 9.27· 102 2

353 0.006 7.14· 102 1 6.70· 102 1

353 0.008 5.66· 102 1 5.26· 102 1

353 0.01 4.76· 102 1 4.39· 102 1

353 0.02 2.92· 102 1 2.60· 102 1

300 320 340 360
1.0E+03

2.0E+03

3.0E+03

4.0E+03

linear stability analysis
energy method

linear stability analysis
energy method

T0

Ma

(a) l = 1

300 320 340 360
1.0E+03

2.0E+03

3.0E+03

4.0E+03

T0

Ma

(b) l = 5

Fig. 4. Stability curves as a function of initial temperature for an octane droplet with a non-deformable free surface at s ¼ 0:0015 for

l ¼ 1 and 5; (E) energy method, (L) linear stability analysis.
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critical Marangoni number, Mac, predicted by the linear

stability analysis is a little higher than that predicted by

the energy method. The subcritical region between the

Mac’s as calculated by these two methods is very narrow.

This fact demonstrates that although the linear stability

analysis with a quasi-steady approximation is not the-

oretically and rigorously accurate for a time-varying

flow motion, it actually provides a pretty good

approximation, at least for the present situation.

Therefore, the basic physics as demonstrated by the

linear stability analysis should be very meaningful.
4. Conclusions and suggestions

The onset of Marangoni instability of a motionless

evaporating droplet surrounded by a passive gas is

studied theoretically by the energy method. The results

clearly demonstrate the validity of energy method as

applied to flows whose basic states vary with time. Un-

like linear stability analysis, energy method is applicable

to flows that are not necessarily slowly varying. More-

over, energy method provides an ascertainment of sta-

bility against disturbances of any amplitude. The present
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results also indicate that, as time proceeds, both the

increase of surface temperature reduction and the

growth of the thermal boundary layer near the free

surface are conducive to the onset of instability. The

critical Marangoni number and wave number increase

with the droplet initial temperature. In addition, the

results as predicted by linear stability analysis [19,20] are

in accord with the present results, indicating the validity

of linear stability analysis as a first approximation to the

analysis of Marangoni instability of an evaporating

droplet.

However, during the evaporation process, the posi-

tion of the free surface is subject to a certain change due

to the boundary regression. Although the time scale of

the interface regression is, in general, about one order

larger than that of the heat diffusion in the liquid phase,

the effect of boundary regression may become significant

to the flow instability for a highly volatile liquid or when

the initial temperature is close enough to its boiling

point. A modified model is then needed to incorporate

appropriately the surface regression effect. Moreover, to

understand the evolution of disturbances when coupled

with a time-varying flow field is also very important and

interesting. To do so, a stochastic formulation with a

statistically random distribution of the initial distur-

bances is needed. The onset time of instability for any

specified Marangoni number can then be determined

and compared with the experimental observation.
Acknowledgements

The support of the ROC National Science Council

through Grant NSC89-2212-E002-063 is gratefully

acknowledged.
References

[1] J.R.A. Pearson, On convection cells induced by surface

tension, J. Fluid Mech. 4 (1958) 489–500.

[2] O. Reynolds, On the dynamical theory of incompressible

viscous fluids and the determination of the criterion,

Philos. Trans. Roy. Soc. Lond. A 186 (1895) 123–164.

[3] W.McF. Orr, The stability or instability of the steady

motions of a liquid. Part II: A viscous liquid, Proc. Roy.

Irish Acad. A 27 (1907) 69–138.

[4] J. Serrin, On the stability of viscous fluid motions, Arch.

Ration. Mech. Anal. 3 (1959) 1–13.

[5] D.D. Joseph, On the stability of the Boussinesq equations,

Arch. Ration. Mech. Anal. 20 (1965) 59–71.

[6] D.D. Joseph, Nonlinear stability of the Boussinesq equa-

tions by the method of energy, Arch. Ration. Mech. Anal.

22 (1966) 163–184.

[7] G.M. Homsy, Global stability of time-dependent flows:

impulsively heated or cooled fluid layers, J. Fluid Mech. 60

(1973) 129–139.
[8] G.P. Neitzel, Onset of convection in impulsively heated or

cooled fluid layers, Phys. Fluids 25 (1982) 210–211.

[9] S.H. Davis, C. Von Kerczek, A reformulation of energy

stability theory, Arch. Ration. Mech. Anal. 52 (1973) 117–

122.

[10] G.M. Homsy, Global stability of time-dependent flows.

Part 2. Modulated fluid layers, J. Fluid Mech. 62 (1974)

387–403.

[11] R.J. Gumerman, G.M. Homsy, The stability of uniformly

accelerated flows with application to convection driven by

surface tension, J. Fluid Mech. 68 (1975) 191–207.

[12] S.H. Davis, G.M. Homsy, Energy stability theory for free-

surface problems: buoyancy–thermocapillary layers, J.

Fluid Mech. 98 (1980) 527–553.

[13] G.P. Neitzel, S.H. Davis, Energy stability theory of

decelerating swirl flows, Phys. Fluids 23 (1980) 432–437.

[14] G.P. Neitzel, Marginal stability of impulsively initial

Couette flow and spin-decay, Phys. Fluids 25 (1982) 226–

231.

[15] G.P. Neitzel, Stability of circular Couette flow with

variable inner cylinder speed, J. Fluid Mech. 123 (1982)

43–57.

[16] R.D. Benguria, M.C. Depassier, Oscillatory instabilities in

the Rayleigh–Benard problem with a free surface, Phys.

Fluids 30 (1987) 1678–1682.

[17] R.D. Benguria, M.C. Depassier, On the linear stability

theory of Benard–Marangoni convection, Phys. Fluids A 1

(1989) 1123–1127.

[18] S.H. Davis, Buoyancy–surface tension instability by the

method of energy, J. Fluid Mech. 39 (1969) 347–359.

[19] V.M. Ha, The analysis of Marangoni instability of evap-

orating liquid, Ph.D. Dissertation, Department of Mechan-

ical Engineering, National Taiwan University, 1998.

[20] V.M. Ha, C.L. Lai, The onset of stationary Marangoni

instability of an evaporating droplet, Proc. Roy. Soc.

Lond. Ser. A 457 (2001) 885–909.

[21] C.L. McTaggart, On the stabilizing effect of surface films in

Benard convection, PCH. Physicochem. Hydrodynam. 5

(1984) 321–331.

[22] C. Perez-Garcia, G. Carneiro, Linear stability analysis of

Benard–Marangoni convection in fluids with a deformable

free surface, Phys. Fluids A 3 (1991) 292–298.

[23] Y. Renardy, M. Renardy, Perturbation analysis of steady

and oscillatory onset in a Benard problem with two similar

liquids, Phys. Fluids 28 (1985) 2699–2708.

[24] Y. Renardy, Interfacial stability in a two-layer Benard

problem, Phys. Fluids 29 (1986) 358–363.

[25] K.A. Smith, On convective instability induced by surface-

tension gradients, J. Fluid Mech. 24 (1966) 401–414.

[26] C.V. Sternling, L.E. Scriven, Interfacial turbulence: hydro-

dynamic instability and the Marangoni effect, Am. Inst.

Chem. Engin. J. 5 (1959) 514–523.

[27] M. Takashima, Nature of the neutral state in convective

instability induced by surface tension and buoyancy, J.

Phys. Soc. Jpn. 28 (1970) 810.

[28] M. Takashima, Surface tension driven instability in a

horizontal liquid layer with a deformable free surface. II.

Overstability, J. Phys. Soc. Jpn. 50 (1981) 2715–2756.

[29] S. Wahal, A. Bose, Rayleigh–Benard and interfacial

instabilities in two immiscible liquid layers, Phys. Fluids

31 (1988) 3502–3510.



V.-M. Ha, C.-L. Lai / International Journal of Heat and Mass Transfer 47 (2004) 3811–3823 3823
[30] R.W. Zeren, W.C. Reynolds, Thermal instabilities in two-

fluid horizontal layers, J. Fluid Mech. 53 (1972) 305–327.

[31] T.S. Sorensen, M. Hennenberg, A. Steinchen, A. Sanfeld,

Chemical and hydrodynamical analysis of stability of a

spherical interface, J. Colloid Interface Sci. 56 (1975) 191–

205.

[32] F.J. Higuera, A. Linan, Stability of a droplet vaporizing in

a hot atmosphere, Progr. Astronaut. Aeronaut. 105 (1985)

217–238.

[33] O. Pirotte, G. Lebon, Surface-tension driven instability in

spherical shells, Appl. Micrograv. Technol. 1 (1988) 175–

179.

[34] A. Cloot, G. Lebon, Marangoni convection in a rotating

spherical geometry, Phys. Fluids A 2 (1990) 525–529.

[35] A. Cloot, G. Lebon, Surface deformation effect on

Marangoni convection in a spherical shell, Micrograv.

Sci. Technol. 3 (1990) 44–46.

[36] H.C.J. Hoefsloot, H.W. Hoogstraten, Marangoni instabil-

ity in spherical shells, Appl. Micrograv. Technol. 2 (1989)

106–108.

[37] H.C.J. Hoefsloot, H.W. Hoogstraten, L.P.B.M. Janssen,

Marangoni instability in a liquid layer confined between
two concentric spherical surfaces under zero-gravity con-

ditions, Appl. Sci. Res. 47 (1990) 357–377.

[38] H.C.J. Hoefsloot, H.W. Hoogstraten, L.P.B.M. Janssen,

J.W. Knobbe, Growth factors for Marangoni instability in

a spherical liquid layer under zero-gravity conditions,

Appl. Sci. Res. 49 (1992) 161–173.

[39] A.-T. Chai, N. Rashidnia, V.S. Arpaci, Marangoni insta-

bility induced convection in an evaporating liquid droplet,

Proceedings VIII European Symposium on Materials and

Fluid Sciences in Microgravity, Brussels, Belgium, 1992,

pp. 187–192.

[40] G. Lebon, P.C. Dauby, A. Cloot, Some problem raised by

Marangoni instability in spherical geometry, in: H.J. Rath

(Ed.), Microgravity Fluid Dynamic, Springer, 1992, pp.

71–79.

[41] S.K. Wilson, The onset of steady Marangoni convection

in a spherical geometry, J. Eng. Math. 28 (1994) 427–

445.

[42] K.A. Hoffmann, Computational Fluid Dynamics for

Engineers, EES, 1989, p. 255.

[43] T.E. Dauber, R.P. Danner, Data compilation tables of

properties of pure compounds, New York, 1985.


	Theoretical analysis of Marangoni instability of an evaporating droplet by energy method
	Introduction
	Mathematical formulation
	The governing equations and boundary conditions
	The basic flow
	The disturbance equations

	Energy stability analysis
	The energy identities
	The strong global stability
	Solution procedure
	Results and discussion

	Conclusions and suggestions
	Acknowledgements
	References


